Biharmonic pattern selection.
نویسندگان
چکیده
A new model to describe fractal growth is discussed which includes effects due to long-range coupling between displacements u. The model is based on the biharmonic equation ∇u = 0 in two-dimensional isotropic defect-free media as follows from the Kuramoto-Sivashinsky equation for pattern formation -or, alternatively, from the theory of elasticity. As a difference with Laplacian and Poisson growth models, in the new model the Laplacian of u is neither zero or proportional to u. Its discretization allows to reproduce a transition from dense to multibranched growth at a point in which the growth velocity exhibits a minimum similarly to what occurs within Poisson growth in planar geometry. Furthermore, in circular geometry the transition point is estimated for the simplest case from the relation rl ≈ L/e 1/2 such that the trajectories become stable at the growing surfaces in a continuous limit. Hence, within the biharmonic growth model, this transition depends only on the system size L and occurs approximately at a distance 60% far from a central seed particle. The influence of biharmonic patterns on the growth probability for each lattice site is also analysed.
منابع مشابه
Multiple solutions for a perturbed Navier boundary value problem involving the $p$-biharmonic
The aim of this article is to establish the existence of at least three solutions for a perturbed $p$-biharmonic equation depending on two real parameters. The approach is based on variational methods.
متن کاملMultiplicity result to some Kirchhoff-type biharmonic equation involving exponential growth conditions
In this paper, we prove a multiplicity result for some biharmonic elliptic equation of Kirchhoff type and involving nonlinearities with critical exponential growth at infinity. Using some variational arguments and exploiting the symmetries of the problem, we establish a multiplicity result giving two nontrivial solutions.
متن کاملOn The Mean Convergence of Biharmonic Functions
Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...
متن کاملChaotic Behavior of the Biharmonic Dynamics System
Motion of a biharmonic system under action of small periodic force and small damped force is studied. The biharmonic oscillator is a physical system acting under a biharmonic force like a sin θ b sin 2θ. The article contains biharmonic oscillator analysis, phase space research, and analytic solutions for separatrixes. The biharmonic oscillator performs chaotic motion near separatrixes under sma...
متن کاملStability of F-biharmonic maps
This paper studies some properties of F-biharmonic maps between Riemannian manifolds. By considering the first variation formula of the F-bienergy functional, F-biharmonicity of conformal maps are investigated. Moreover, the second variation formula for F-biharmonic maps is obtained. As an application, instability and nonexistence theorems for F-biharmonic maps are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
دوره 47 2 شماره
صفحات -
تاریخ انتشار 1993